

Experiences from the deep geothermal project in Mol, Belgium

VITO - Ben Laenen

 \leftarrow

20

611 V

61

Motivation to start the Balmatt project

Motivation to start the Balmatt project

Motivation to start the Balmatt project

■ heating/cooling - fossil ■ heating/cooling - RES ■ electricity - fossil ■ electricity - RES

- Drilling of an exploration well
 - Mol Donk: brown field Balmatt industries)
 - Expected depth of the reservoir: 2.800 3.600 m
 - Expected reservoir temperature: 132 138°C
 - Expected flow rate per well: 35 50 kg/s
- Heat supply to an existing (>80°C) and new, low temperature (< 65°C) heating grid
- Electricity production using a flexible organic Rankine cycle (prototype)

OPERATIONAL PLAN | MOL-GT-01

Estimated Time vs Depth curve

- Update geological model
- Optimized well design
 - Deviated well for injection
 - Covering the full stratigraphic thickness of the Lower Carboniferous Limestone Group
 - Shorter 3th section for better stability
 - Adapted mud program

- High torque and friction
 - Base of Lower Carboniferous nor reached
 - TD: 4341 m TVD: 3820 m
 - Deviation: 1769 m
- Drilling time
 - Estimated: 90 days
 - Actual: 110 days

Ambition

- Covering full stratigraphic thickness of the Lower
 Carboniferous Limestone
- Explore geothermal potential of Evieux Formation (Upper Devonian)
- Test fault zone at larger depth for additional production

- 3 wells completed and tested
 - Reservoir between 3200 3800 m
 - Reservoir temperature: 138 142°C
 - Fracture and dissolution related permeability
 - Highly available permeability: 0.01 100 mDarcy
 - Complex reservoir geometry
 - Review of depositional model for the Upper Dinantian needed
 - Revision of the exploration model
 - Uncertainty remains even after drilling of 3 wells

Ren Hr

Corrosion and scaling

- **Material selection**
- Monitoring
- **Prevention**
- **New concepts / materials**

Emissions

- Geothermal brine (salts)
- **Dissolved** gasses
- Degassing
- NORM

Seismicity

- Seismic hazard and risk
- Monitoring
- **Traffic light systems**

Parameter	unit	MOL-GT01-3400m	MOL-GT01-3280m
Nitrogen	% _{vol}	2.38	4.01
Argon	% _{vol}	0.07	0.07
Carbon dioxide	% _{vol}	77.3	75.8
Methane + ethane	% _{vol}	8.23	8.46
Helium	% _{vol}	0.23	0.27
Hydrogen	% _{vol}	11.7	11.4
Dissolved gas content	Nm ³ /m ³	2.557	2.392
Bubble point	bar		25 – 32 bar

- High pressures:
 - Design pressure 60 bar
 - Operating pressure: 40 bar -> 45 bar
- Gas separation tank
- Gas re-injection column
 - Restrictions due tot dissolution kinetics
 - Avoiding hammer effects

Score	Basement connected	Distance to fault [km]	Orientation of faults in current stress field	Net injected volume [1000	Inter-well pressure communicatio	Reinjection pressure [MPa]	circulation rate [m³/h]	Epicentral distance to natural	Epicentral distance to induced
10	yes	< 0.1	favourable	> 20	no	> 7	> 360	< 1	< 1
7	possible	0.1 - 0.5	shearing possible	5 - 20	unlikely	4 - 7	180-360	1 - 5	1 - 5
3	unlikely	0.5 - 1.5	shearing unlikely	0.1 - 5	likely	1 - 4	50-180	5 - 10	5 - 10
0	no	> 1.5	locked	< 0.1	yes	< 1	< 50	> 10	> 10
Score:	7	7	10	3	3	10	3	0	0

- Installation of a seismic monitoring
 network
- Implementation of a traffic light system
 - Three control levels
 - Based on local magnitude, location with respect faults, frequency of events and ground motion (PGV, PGA)
- Ambition to avoid sensible earthquakes
 - Sensible event on 23 June 2019

- Quantification on uncertainty of mapped main fault orientation, location and dip
- Improvement of the location
 accuracy
- Relationship geothermal exploitation - seismic activity based on field measurements
- Investigate apparent absence of seismic events in the immediate vicinity of the injection point
- Evaluation role of aseismic slip

Transition towards a new energy landscape

- Prediction and assessment of geothermal resources
 - Better understanding of complex and deep geological processes
 - Better predictability of underground conditions
 - Optimize use of resources and increase energy production
- Resource access and development
 - More efficient drilling
 - Increase flow rates or thermal output
- Heat and electricity generation and system integration
 - Reduce impact
 - Maximize generation at the lowest lifetime cost
 - Hybrid, multi-source and multipurpose high-efficiency systems embedding geothermal

Changing the world is too big an effort for one man. Only by working together in respect and confidence we can create a new world where it is good to lo live for all.

ETIP-DG

European Technology & Innovation Platform on **Deep Geothermal**

www.etip-dg.eu

ETIP-DG

European Technology & Innovation

Strategic Research and Innovation Agenda

www.etip-dg.eu

