B1T: A public domain model for 1D temperature and rheology construction in basementsedimentary geothermal exploration

J. Limberger¹, D. Bonté¹, G. de Vicente², F. Beekman¹, S. Cloetingh¹ and J.-D. van Wees^{1,3}

¹Universiteit Utrecht, Princetonlaan 6, Utrecht, The Netherlands

³TNO-Energy, Postbus 80015, 3508 TA Utrecht, The Netherlands

Gathering data for green field geothermal regions, often lacking data on rock thermalmechanical properties, can be time-consuming and expensive. If there is need for a quick, firstorder assessment, or when the model area is very large and there are gaps in data availability, it can be sufficient to use generic properties. For this purpose we have developed a generic property database that can be used to gain insight in the thermal properties and mechanical strength that one could expect for different basin settings, crustal geometries, and thermaltectonic ages (Limberger et al., 2017). To this end, we have combined the thermal property tables from Hantschel & Kauerauf (2009) and rheological properties (Tesauro et al., 2009) and coupled them with a simple 1D thermal-mechanical model into a tool that can be used for the above described purposes.

The tool can be used to compare two different scenarios for crustal and sediment configuration. As input the user can give estimates for the thickness of the layers including sediments, upper and lower crust and the total lithosphere (Fig. 1). With a drop-down menu, different lithologies can be selected for the sediments, automatically returning the corresponding thermal-mechanical properties (Fig. 1). Thermal conductivity is temperature and pressure dependent throughout the whole crust (Fig. 3) and is updated iteratively and automatically with a 1D steady-state thermal solution (cf. Eq. 1).

$$T(z) = T_{z_0} + \frac{Q}{k} (z - z_0) - \frac{A}{2k} (z - z_0)^2$$
(Eq. 1)

For the sediment layer compaction curves are calculated and used to determine porosities and the subsequent bulk thermal conductivity by mixing the pore fluid with the matrix thermal conductivity (see paper and Fig. 3). Burial anomalies can be included to take into account the effects of anomalous compaction, affecting thermal properties.

The temperature output is used together with the rheology to calculate strength profiles and give an estimate of the integrated strength for compression and extension (cf. Table 3.1). Different rheological properties can be chosen for upper and lower crust and lithosphere mantle by selecting different rheologies from the drop-down menu (Fig. 2).

²G.I. Tectonofísica Aplicada, Universidad Complutense de Madrid, C/ Jose Antonio Novais n2,

²⁸⁰⁴⁰ Madrid, Spain

Input parameters temperature:

	· · ·	•		
	parameter	case a	case b	
hickness of water column	D _w	0	0	
hickness lithosphere	D _{lith}	160000	120000	
hickness lower crust (ex. sediments)	Dz _{lowercrust}	20000	20000	
hickness upper crust (ex. sediments)	Dz _{uppercrust}	20000	20000	
hickness sediments	Dz _{sed}	4000	8000	
rosion (extra burial depth)	Dz _{burial}	0	0	
hermal conductivity lower crust ¹	k _{lowercrust}	2.6	2.6	
hermal conductivity upper crust ¹	k _{uppercrust}	3	3	
hermal conductivity mantle ²	k _{ma}	4.13	4.13	
hermal conductivity sediments ³	k _{sed}	3.95	1.64	
adiogenic heat generation upper crust as ercentage from surface heat flow ⁴	A _{uc} %	40	40	
Radiogenic heat generation mantle⁵	A _{ma}	0.02	0.02	
Radiogenic heat generation lower crust⁵	A _{lc}	0.4	0.4	
ladiogenic heat generation sediments ³	A _{sed}	0.7	2.03	
emperature base lithosphere	Т _b	1200	1200	
urface temperature	Ts	10	10	
emperature coefficient upper crust ¹	buc	0.0015	0.0015	
emperature coefficient lower crust ¹	blc	0.0001	0.0001	
ressure coefficient ¹	С	0.000053	0.000053	
	Input param	eters sedimen	its	
		Туре	Rock	
ELECT rock type	Clastic_Sediments_Sandstone		Clastic_Sedir	
	Lithology		Litholo	
ELECT lithelemy				
SELECT lithology		pical	typ	
	typ			
SELECTED rock type	Clastic_Sedime	vical	typ	
SELECTED rock type	Clastic_Sedime	oical	typ Clastic_Sedi	
SELECTED rock type SELECTED lithology	Clastic_Sedime Clastic_Sedime typ	oical ents_Sandstone oical	typ Clastic_Sedin typ	
SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³	Clastic_Sedime typ	oical ents_Sandstone iical Case a	Clastic_Sedir Clastic_Sedir typ case b	
SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³ Anisotropy factor ³	$\begin{array}{c} typ\\ Clastic_Sedime\\ typ\\ \hline \end{array}$	oical ents_Sandstone oical Case a 3.95	Clastic_Sedi typ case b 1.64	
SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³ Anisotropy factor ³ Specific heat capacity (not used) ³	Clastic_Sedime typ parameter λ _{RMv20}	oical ents_Sandstone oical Case a 3.95 1.15	Clastic_Sedi typ case b 1.64 1.6	
SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³ Anisotropy factor ³ Specific heat capacity (not used) ³ (Thermal sorting factor ³	$\begin{array}{c} typ\\ \hline \\ Clastic_Sedime\\ typ\\ \hline \\ parameter\\ \hline \\ \lambda_{RMv20}\\ \hline \\ a_{\lambda}\\ \hline \\ Cp\\ \hline \\ f \end{array}$	oical ents_Sandstone oical Case a 3.95 1.15 855	Clastic_Sedi typ case b 1.64 1.6 860	
SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³ Anisotropy factor ³ Specific heat capacity (not used) ³ Thermal sorting factor ³ Density rock ³	$\begin{array}{c} typ\\ \hline \\ Clastic_Sedime\\ typ\\ \hline \\ parameter\\ \hline \\ \lambda_{RMv20}\\ \hline \\ a_{\lambda}\\ \hline \\ Cp \end{array}$	oical ents_Sandstone oical Case a 3.95 1.15 855 1	Clastic_Sedin typ case b 1.64 1.6 860 1.38	
SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³ Anisotropy factor ³ Specific heat capacity (not used) ³ Thermal sorting factor ³ Density rock ³ Jranium content ³	$\begin{array}{c} typ \\ \hline \\ Clastic_Sedime \\ typ \\ \hline \\ parameter \\ \hline \\ \lambda_{RMv20} \\ \hline \\ a_{\lambda} \\ \hline \\ Cp \\ f \\ \hline \\ \rho_{sed} \\ \end{array}$	oical ents_Sandstone oical Case a 3.95 1.15 855 1 2720	Clastic_Sedin typ case b 1.64 1.6 860 1.38 2700	
SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³ Anisotropy factor ³ Specific heat capacity (not used) ³ Thermal sorting factor ³ Density rock ³ Jranium content ³	$\begin{array}{c} typ\\ \hline \\ Clastic_Sedime\\ typ\\ \hline \\ \hline \\ parameter\\ \hline \\ \\ \lambda_{RMv20}\\ \hline \\ \\ a_{\lambda}\\ \hline \\ \\ Cp\\ \hline \\ f\\ \hline \\ \\ \rho_{sed}\\ \hline \\ \\ U \end{array}$	bical ents_Sandstone bical Case a 3.95 1.15 855 1 2720 1.3	Clastic_Sedii typ case b 1.64 1.6 860 1.38 2700 3.7	
SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³ Anisotropy factor ³ Specific heat capacity (not used) ³ Thermal sorting factor ³ Density rock ³ Uranium content ³ Potassium content ³	$\begin{array}{c} typ \\ \hline \\ Clastic_Sedime \\ typ \\ \hline \\ \hline \\ parameter \\ \hline \\ \lambda_{RMv20} \\ \hline \\ a_{\lambda} \\ \hline \\ Cp \\ f \\ \hline \\ \rho_{sed} \\ \hline \\ U \\ \hline \\ Th \\ \end{array}$	bical ents_Sandstone bical Case a 3.95 1.15 855 1 2720 1.3 3.5	typ Clastic_Sedii typ case b 1.64 1.6 860 1.38 2700 3.7 12	
SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³ Anisotropy factor ³ Specific heat capacity (not used) ³ Thermal sorting factor ³ Density rock ³ Jranium content ³ Thorium content ³ Potassium content ³ Radiogenic heat production ³	$\begin{array}{c} typ\\ \hline \\ Clastic_Sedime\\ typ\\ \hline \\ parameter\\ \hline \\ \lambda_{RMv20}\\ \hline \\ a_{\lambda}\\ \hline \\ Cp\\ f\\ f\\ \hline \\ \rho_{sed}\\ \hline \\ U\\ \hline \\ Th\\ \hline \\ K\\ \hline \end{array}$	bical ents_Sandstone bical Case a 3.95 1.15 855 1 2720 1.3 3.5 1.3	typ Clastic_Sedii typ case b 1.64 1.6 860 1.38 2700 3.7 12 2.7	
SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³ Anisotropy factor ³ Specific heat capacity (not used) ³ Thermal sorting factor ³ Density rock ³ Jranium content ³ Potassium content ³ Potassium content ³ Radiogenic heat production ³ Depositional porosity ³	$\begin{array}{c} typ \\ \hline \\ Clastic_Sedime \\ typ \\ \hline \\ parameter \\ \hline \\ \lambda_{RMV20} \\ \hline \\ a_{\lambda} \\ \hline \\ Cp \\ f \\ \hline \\ \rho_{sed} \\ U \\ \hline \\ U \\ \hline \\ Th \\ \hline \\ K \\ \hline \\ A_{sed} \\ \end{array}$	bical ents_Sandstone bical Case a 3.95 1.15 855 1 2720 1.3 3.5 1.3 0.7	Clastic_Sedia typ case b 1.64 1.6 860 1.38 2700 3.7 12 2.7 2.03	
SELECT lithology SELECTED rock type SELECTED lithology Rock matrix conductivity at 20 °C ³ Anisotropy factor ³ Specific heat capacity (not used) ³ Thermal sorting factor ³ Density rock ³ Uranium content ³ Thorium content ³ Potassium content ³ Potassium content ³ Depositional porosity ³ Athy depth factor ³	$\begin{array}{c} typ \\ \hline \\ Clastic_Sedime \\ typ \\ \hline \\ parameter \\ \hline \\ \lambda_{RMv20} \\ \hline \\ a_{\lambda} \\ \hline \\ Cp \\ f \\ \hline \\ f \\ \hline \\ \rho_{sed} \\ \hline \\ U \\ \hline \\ Th \\ \hline \\ K \\ \hline \\ A_{sed} \\ \hline \\ \phi(0) \\ \end{array}$	bical ents_Sandstone bical Case a 3.95 1.15 855 1 2720 1.3 3.5 1.3 0.7 41	Clastic_Sedin typ case b 1.64 1.6 860 1.38 2700 3.7 12 2.7 2.03 70	

Fig. 1: Screenshot from the input and selection fields of the thermal part of the generic property tool. Fields in orange can be changed or selections can be made from a drop-down menu.

		input param	eters rheology		
		Select rheology li	thotypes		
		ca	ca	e b	
	SELECT upper crust rheology	Granite (dry)		Quartzite (dr	
	SELECT lower crust rheology	Mafic granulite		Diabase (dry)	
	SELECT mantle rheology		D. et al. (2013	Olivine (dry)	
					- () /
		parameter	case a	case b	
	Density ³	ρ _{sed}	2720	2700	
lts	Pore fluid factor ⁶	λ_{sed}	0.4	0.4	
Sediments	Friction coefficient compression ⁶	f _{compsed}	3	3	
Sed	Friction coefficient strike-slip ⁶	f _{sssed}	1.2	1.2	
	Friction coefficient extension ⁶	f _{extsed}	0.75	0.75	
	Density ⁶	ρ _{uc}	2800	2800	
	Pore fluid factor ⁶	λ _{uc}	0.4	0.4	
	Friction coefficient compression ⁶	f _{compuc}	3	3	
ust	Friction coefficient strike-slip ⁶	f _{ssuc}	1.2	1.2	
Upper Crust	Friction coefficient extension ⁶	f _{extuc}	0.75	0.75	
nppe	Power law exponent ⁶	n _{uc}	3.3	2.72	
	Power law activation energy ⁵	E _{puc}	186	134	
	Power law strain-rate ⁶	A _{puc}	3.16E-26	6.03E-24	
	Strain-rate ⁶	ε _{uc}	1E-15	1E-15	
	Density ⁶	ρις	2900	2900	
	Pore fluid factor ⁶		0.4	0.4	
	Friction coefficient compression ⁶	f _{complc}	3	3	
ust	Friction coefficient strike-slip ⁶	f _{sslc}	1.2	1.2	
ς Υ	Friction coefficient extension ⁶	f _{extlc}	0.75	0.75	
Lower Crust	Power law exponent ⁶	n _{lc}	4.2	3.05	
_	Power law activation energy ⁶	Eplc	445	276	
	Power law strain-rate ⁶	A _{plc}	8.83E-22	6.31E-20	
	Strain-rate ⁶	εις	1E-15	1E-15	
tte	Density ⁶	ρ _{ma}	3300	3300	
	Pore fluid factor ⁶	λ _{ma}	0.4	0.4	
	Friction coefficient compression ⁶	f _{compma}	3	3	
	Friction coefficient strike-slip ⁶	f _{ssma}	1.2	1.2	
	Friction coefficient extension ⁶	f _{extma}	0.75	0.75	
	Power law exponent ^{6,7}	n _{ma}	0	3	
Mantle	Power law activation energy ^{6,7}	E _{pma}	510	510	
	Power law strain-rate ^{6,7}	A _{pma}	0	7E-14	
	Dorn law activation energy ^{6,7}	ED	450	535	
	Dorn law strain-rate ^{6,7}	A _D	1000000	5.7E+11	
	Dorn law stress ^{6,7}	σ _D	1.50E+10	8.50E+09	

Fig. 2: Screenshot from the input and selection fields for the rheology part of the generic property tool. Fields in orange can be changed or selections can be made from a drop-down menu.

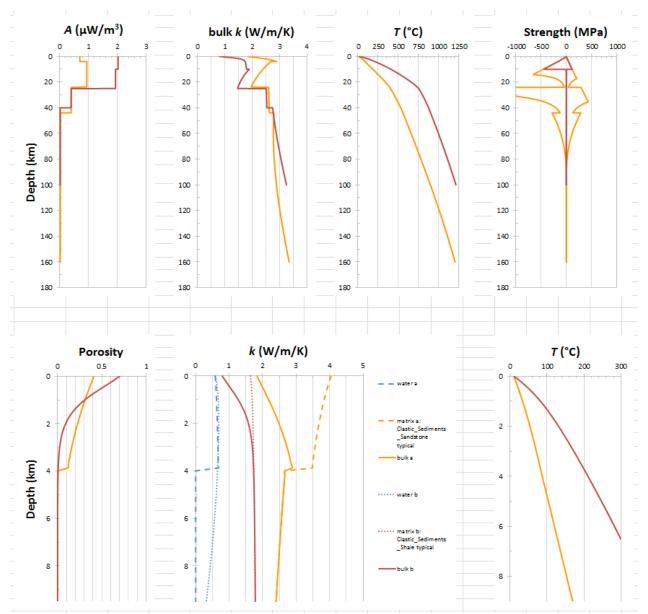


Fig. 3: Screenshot from the output graphs of the generic property tool. Two scenarios with a different lithology and thermal regime can be compared (orange and red). Upper panels show full depth range. Lower panels show the upper 10 km in more detail, including the thermal conductivity of the matrix (dashed orange and red) and pore fluid (blue) compared to the bulk thermal conductivity (solid orange and red).

Parameter	Symbol	Units	Sediments	Upper crust	Lower crust	Upper mantle			
Compostition	-	-	-	Quarzite (dry) [1]/Granite (dry) [1]	Mafic granulite [2]/Diorite (wet) [1]/ Diabase (dry) [1]	Olivine (dry) [3]			
Density min-max/mean	ρ	kg m ⁻³	1700–2749/ 2227	2265-2960/2715	2709-3368/2990	3232-3267/3245			
Layer Depth min-max/mean	z	km	0-16.5/3	4-43.5/21	9.5-57/33	85-235/154			
Friction coefficient ext/com	f	-	0.75/3	0.75/3	0.75/3	0.75/3			
Pore fluid factor	λ	-	0.36	0.36	0.36	0.36			
Power law exponent	n	-	-	2.72/3.3	4.2/2.4/3.05	3			
Power law activation energy	EP	kJ mol ⁻¹	-	134/186	445/212/276	510			
Power law strain-rate	AP	$Pa^{-n}s^{-1}$	-	6.03e ⁻²⁴ /3.16e ⁻²⁶	8.83e ⁻²² /1.26e ⁻¹⁶ /6.31e ⁻²⁰	7.00e ⁻¹⁴			
Dorn law activation energy	ED	kJ mol ⁻¹	-	-	-	535			
Dorn law strain-rate	AD	s ⁻¹	-	-	-	5.70e ¹¹			
Dorn law stress	$\sigma_{\rm D}$	Pa	-	-	-	8.50e ⁹			
Strain rate	8	s ⁻¹	-	10e ⁻¹⁵	10e ⁻¹⁵	10e ⁻¹⁵			
Brittle strength	$\sigma = f \rho g z (1 - \lambda)$								
Creep equations									
Pwer law creep	$\sigma = \left[rac{s}{A\sigma} ight]^{rac{1}{2}}, \exp\left[rac{E\sigma}{nRT} ight]$								
Dorn law creep	$\sigma = \sigma_{\rm D}$	$\left(1-\left[-\frac{RT}{E_{\rm D}},\ln\right]\right)$	$\left(\frac{\dot{\epsilon}}{A_{\rm D}}\right)^{1/2}$						

Table 3.1: Power law and Dorn law creep parameters for sediments, crust and mantle (from Tesauro et al., 2009). Numbers in brackets denote different sources of the data.

References

Hantschel, T. and Kauerauf, A. I. (2009): Fundamentals of Basin and Petroleum Systems Modeling. Springer Berlin Heidelberg, Germany, ISBN 978-3540723172.

Limberger, J., Bonté, D., de Vicente, G., Beekman, F., Cloetingh, S., van Wees, J.-D. (2017): A public domain model for 1D temperature and rheology construction in basement-sedimentary geothermal exploration: An application to the Spanish Central System and adjacent basins, Acta Geodaetica et Geophysica, DOI: 10.1007/s40328-017-0197-5.

Tesauro, M., Kaban, M.K., Cloetingh, S.A.P.L. (2009): A new thermal and rheological model of the European lithosphere. Tectonophysics, 476 (3-4), pp. 478-495.